New Bounds on the Real Polynomial Roots
DOI:
https://doi.org/10.7546/CRABS.2022.02.02Keywords:
polynomial equation, root bounds, Cauchy polynomial, Cauchy theorem, Cauchy and Lagrange bounds, Descartes’ rule of signsAbstract
The presented analysis determines several new bounds on the real roots of the equation $$a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0=0$$ (with $$a_n>0$$). All proposed new bounds are lower than the Cauchy bound $$\max\left\{1,\sum_{j=0}^{n-1}|a_j/a_n|\right\}$$. Firstly, the Cauchy bound formula is derived by presenting it in a new light – through a recursion. It is shown that this recursion could be exited at earlier stages and, the earlier the recursion is terminated, the lower the resulting root bound will be. Following a separate analysis, it is further demonstrated that a significantly lower root bound can be found if the summation in the Cauchy bound formula is made not over each one of the coefficients $$a_0,a_1,\dots,a_{n-1}$$, but only over the negative ones. The sharpest root bound in this line of analysis is shown to be the larger of $$1$$ and the sum of the absolute values of all negative coefficients of the equation divided by the largest positive coefficient. The following bounds are also found in this paper: $$\max\left\{1,\left(\sum_{j=1}^{q} B_j/A_l\right)^{1/(l-k)}\right\}$$, where $$B_1,B_2,\dots,B_q$$ are the absolute values of all of the negative coefficients in the equation, $$k$$ is the highest degree of a monomial with a negative coefficient, $$A_l$$ is the positive coefficient of the term $$A_l x^l$$ for which $$k<l\le n$$.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Proceedings of the Bulgarian Academy of SciencesCopyright (c) 2022 Proceedings of the Bulgarian Academy of Sciences
Copyright is subject to the protection of the Bulgarian Copyright and Associated Rights Act. The copyright holder of all articles on this site is Proceedings of the Bulgarian Academy of Sciences. If you want to reuse any part of the content, please, contact us.