@article{Altassan_Alan_2024, place={Sofia, Bulgaria}, title={Mersenne Numbers in Generalized Lucas Sequences}, volume={77}, url={https://proceedings.bas.bg/index.php/cr/article/view/453}, DOI={10.7546/CRABS.2024.01.01}, abstractNote={<p>Let $$k \geq 2$$ be an integer and let $$(L_{n}^{(k)})_{n \geq 2-k}$$ be the $$k$$-generalized Lucas sequence with certain initial $$k$$ terms and each term afterward is the sum of the $$k$$ preceding terms. Mersenne numbers are the numbers of the form $$2^a-1$$, where $$a$$ is any positive integer. The aim of this paper is to determine all Mersenne numbers which lie inside $$k$$-Lucas sequences.</p>}, number={1}, journal={Proceedings of the Bulgarian Academy of Sciences}, author={Altassan, Alaa and Alan, Murat}, year={2024}, month={Jan.}, pages={3–10} }