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Abstract

We consider an inverse nodal problem for p-Laplacian string equation un-
der some boundary conditions. Asymptotic formulas for eigenvalues and nodal
parameters are constructed by modified Prüfer substitution. The most im-
portant process is to apply modified Prüfer substitution to get an exhaustive
asymptotic estimate for eigenvalues. Moreover, a reconstruction formula for
density function of p-Laplacian string equation is obtained by nodal parame-
ters. Generated outcomes are the generalization of the known string problem.
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1. Introduction. Consider the following p-Laplacian string equation

(1.1) −
(
y
′(p−1)

)′
= (p− 1)λρ(x)y(p−1), 0 < x < 1,

with the boundary conditions

(1.2) y(0) = y(1) = 0,

where p > 1, λ is a spectral parameter and y(p−1) = |y|(p−2) y. During this study,
we need to suppose that ρ(x) is a positive C2-function defined on [0, 1] and y(x, λ)
denotes the solution of (1.1)–(1.2). It should be emphasized that (1.1) turns to
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classical string equation when p = 2 which is studied by several authors (see
[13,18]).

The determination of differential operators by spectral datas has become an
interesting problem recently. The most important of these operators is Sturm–
Liouville (SL) operator. In inverse SL problem, one tries to recover both potential
function and constants by the eigenvalues, norming constants and spectral func-
tion. McLaughlin [11] suggested a novel and effective method which is related
to nodal points to construct SL operator in 1988. This effective technique is called
inverse nodal problem. Independently, Shen [13] examined the link between the
nodal parameters and the density function of the string equation in the same year.
Inverse nodal problem has been considered and various reconstruction formulas
have been obtained and examined for different operators by many authors (see
[7,8, 10,16,19]).

The set Xn =
{
xnj
}n−1
j=1

is known as the set of nodal points for eigenfunction
yn(x, λn) corresponding to λn for ∀n ∈ N and, lnj = xnj+1−xnj is the corresponding
nodal length. yn(x, λn) has exactly n− 1 nodal points as 0 = x

(n)
0 < x

(n)
1 < · · · <

x
(n)
n−1 < x(n)n = 1 on (0, 1). To say something on inverse nodal problem for p-

Laplacian string equation, we should firstly recall the generalized sine function Sp
which is the solution of the problem

(1.3) −
(
S

′(p−1)
p

)′
= (p− 1)S(p−1)

p ,

Sp(0) = 0, S′p(0) = 1,

where Sp and S′p are periodic which satisfy the relation

|Sp(x)|p +
∣∣S′p(x)∣∣p = 1,

for any x ∈ R. These functions are the p-generalizations of classical sine and
cosine. Here,

πp =

1∫
0

2

(1− tp)
1
p

dt =
2π

p sin
(
π
p

) ,
is the first zero of Sp in positive axis (see [3]). Presently, we will bring to mind
some basic properties of Sp.

Lemma 1.1 ([3]). Let Sp be the generalized sine function. Then, the following
relations hold.
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i) For S′p 6= 0, (
S′p
)′
= −

∣∣∣∣SpS′p
∣∣∣∣p−2 Sp.

ii)(
SpS

′(p−1)
p

)′
=
∣∣S′p∣∣p − (p− 1)Spp = 1− p |Sp|p = (1− p) + p

∣∣S′p∣∣p .
p-Laplacian eigenvalue problems are extremely important to get more general re-
sults in spectral theory. These problems have been considered by several authors
(see [1,4–6,9, 12,14,15]).

This study is arranged as follows. In Section 2, we construct some asymptotic
formulas for eigenvalues and nodal parameters of the problem (1.1)–(1.2) by using
Prüfer substitution. In Section 3, we obtain a reconstruction formula for density
function of (1.1)–(1.2). Eventually, we give a summary for this study with a
conclusion in Section 4.

2. Some asymptotic estimates for p-Laplacian string equation. Here,
we firstly obtain asymptotic expansion of eigenvalues for (1.1) p-Laplacian string
equation with (1.2) boundary conditions. For this purpose, we define a modified
Prüfer substitution which is one of the strongest methods to study the solutions
of a self adjoint 2nd order linear differential equation as

λ1/pρ1/p(x)y(x) = R(x)Sp

(
λ1/p θ(x, λ)

)
,(2.1)

y′(x) = R(x)S′p

(
λ1/p θ(x, λ)

)
,

or

(2.2)
y′(x)

y(x)
= λ1/pρ1/p(x)

S′p
(
λ1/p θ(x, λ)

)
Sp
(
λ1/p θ(x, λ)

) ,
where R(x) is amplitude and θ(x) is Prüfer variable [17]. Differentiating both sides
of Eq. (2.2) with respect to x and considering Lemma 1.1, we obtain

θ′(x, λ) = ρ1/p(x) +
ρ′(x)

pλ1/pρ(x)

Sp
(
λ1/p θ(x, λ)

)
S′p
(
λ1/p θ(x, λ)

)(2.3)

− ρ′(x)

pλ1/pρ(x)

Sp
(
λ1/p θ(x, λ)

)
S′p
(
λ1/p θ(x, λ)

)Spp (λ1/p θ(x, λ)) .
This relation will play an important role in the proofs of Theorems 2.1, 2.2

and 2.3. In addition, another equality which is very important and known as
Riemann–Lebesgue lemma for our proofs is given below.
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Lemma 2.1 ([15]). Define θ(x, λn) as in (2.1) and φn(x) = Spp

(
λ1/pn θ(x, λn)

)
−

1

p
. Then, for any g ∈ L1(0, 1)

1∫
0

φn(x)g(x)dx = 0.

Therefore, we can construct asymptotic estimates of eigenvalues and nodals for
the problem (1.1), (1.2).

Theorem 2.1. The eigenvalues of the problem (1.1), (1.2) are in the form of

(2.4) λ1/pn =
nπp
cρ(1)

+
(p− 1)

p2cρ(1)

1∫
0

ρ′(x)Sp

(
λ
1/p
n θ(x, λn)

)
ρ(x)S′p

(
λ
1/p
n θ(x, λn)

) dx+O

(
1

np−2

)

as n→∞ where cρ(1) =
1∫

0

ρ1/p(x)dx.

Proof. First of all, we need to integrate both sides of (2.3) from 0 to 1 with
respect to x to get

θ(1, λ) =

1∫
0

ρ1/p(x)dx+
1

pλ1/p

1∫
0

ρ′(x)Sp
ρ(x)S′p

dx− 1

pλ1/p

1∫
0

ρ′(x)Sp
ρ(x)S′p

Sppdx,

where θ(0, λn) = 0 and θ(1, λn) =
nπp

λ
1/p
n

. Here, we suppose that λn is an eigenvalue

of the problem (1.1)–(1.2). By Lemma 2.1, we know that

1∫
0

ρ′(x)Sp
ρ(x)S′p

(
Spp −

1

p

)
dx = o(1), as n→∞.

Hence

θ(1, λn) = cρ(1) +
(p− 1)

p2λ
1/p
n

1∫
0

ρ′(x)Sp
ρ(x)S′p

dx+O

(
1

λ
1− 2

p
n

)
.

Then, we have

θ(1, λn) =
nπp

λ
1/p
n

= cρ(1) +
(p− 1)

p2λ
1/p
n

1∫
0

ρ′(x)Sp
ρ(x)S′p

dx+O

(
1

λ
1− 2

p
n

)
,
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or
1

λ
1/p
n

=
cρ(1)

nπp
+

(p− 1)

p2nπpλ
1/p
n

1∫
0

ρ′(x)Sp
ρ(x)S′p

dx+
1

nπp
O

(
1

λ
1− 2

p
n

)
,

from the boundary condition (1.2). As n is sufficiently large, it follows that

(2.5)
1

λ
1/p
n

=
cρ(1)

nπp
+

(p− 1)cρ(1)

p2 (nπp)
2

1∫
0

ρ′(x)Sp
ρ(x)S′p

dx+O

(
1

np

)
.

Therefore, we get

λ1/pn =
nπp
cρ(1)

+
(p− 1)

p2cρ(1)

1∫
0

ρ′(x)Sp
ρ(x)S′p

dx+O

(
1

np−2

)
.

So, it completes the proof.
Theorem 2.2. Asymptotic estimate of the nodals for the problem (1.1), (1.2)

satisfies

xnj =
jcρ(1)

n
+
j(p− 1)cρ(1)

p2n2πp

1∫
0

ρ′(x)Sp
ρ(x)S′p

dx− cρ(1)

p (nπp)

xnj∫
0

ρ′(x)Sp
ρ(x)S′p

dx(2.6)

+
cρ(1)

p (nπp)

xnj∫
0

ρ′(x)Sp
ρ(x)S′p

Sppdx−

xnj∫
0

[
ρ1/p(x)− 1

]
dx+O

(
j

np

)
,

as n→∞.
Proof. Integrating (2.3) from 0 to xnj yields

jπp

λ
1/p
n

= xnj +

xnj∫
0

[
ρ1/p(x)− 1

]
dx+

1

pλ
1/p
n

xnj∫
0

ρ′(x)Sp
ρ(x)S′p

dx− 1

pλ
1/p
n

xnj∫
0

ρ′(x)Sp
ρ(x)S′p

Sppdx.

By considering (2.5), we obtain

xnj =
jcρ(1)

n
+
j(p− 1)cρ(1)

p2n2πp

1∫
0

ρ′(x)Sp
ρ(x)S′p

dx− cρ(1)

p (nπp)

xnj∫
0

ρ′(x)Sp
ρ(x)S′p

dx

+
cρ(1)

p (nπp)

xnj∫
0

ρ′(x)Sp
ρ(x)S′p

Sppdx−

xnj∫
0

[
ρ1/p(x)− 1

]
dx+O

(
j

np

)
.
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Theorem 2.3. Asymptotic estimate of the nodal lengths for (1.1), (1.2) has
the below relation

lnj =
cρ(1)

n
+

(p− 1)cρ(1)

p2n2πp

1∫
0

ρ′(x)Sp
ρ(x)S′p

dx−

xnj+1∫
xnj

[
ρ1/p(x)− 1

]
dx(2.7)

− cρ(1)

p (nπp)

xnj+1∫
xnj

ρ′(x)Sp
ρ(x)S′p

dx+
cρ(1)

p (nπp)

xnj+1∫
xnj

ρ′(x)Sp
ρ(x)S′p

Sppdx+O

(
1

np

)
,

as n→∞.
Proof. For large n ∈ N, integrating (2.3) in [xnj , x

n
j+1] and using the definition

for nodal length, we have

πp

λ
1/p
n

= xnj+1 − xnj +

xnj+1∫
xnj

[
ρ1/p(x)− 1

]
dx+

1

pλ
1/p
n

xnj+1∫
xnj

ρ′(x)Sp
ρ(x)S′p

dx

− 1

pλ
1/p
n

xnj+1∫
xnj

ρ′(x)Sp
ρ(x)S′p

Sppdx,

or

lnj =
cρ(1)

n
+

(p− 1)cρ(1)

p2n2πp

1∫
0

ρ′(x)Sp
ρ(x)S′p

dx−

xnj+1∫
xnj

[
ρ1/p(x)− 1

]
dx

− cρ(1)

p (nπp)

xnj+1∫
xnj

ρ′(x)Sp
ρ(x)S′p

dx+
cρ(1)

p (nπp)

xnj+1∫
xnj

ρ′(x)Sp
ρ(x)S′p

Sppdx+O

(
1

np

)
.

3. Reconstruction formula for the density function. In this section,
we express an explicit formula for density function of p-Laplacian string equation
by nodal parameters. The way that we used in the proof of the next theorem is
similar to classical; p-Laplacian SL and energy-dependent SL eigenvalue problems
(see [2]).

Theorem 3.1. Assume that ρ is a positive C2-function on [0, 1]. Then

ρ1/p(x) = lim
n→∞

1 + (1− p)
p2πp

xnj+1∫
xnj

ρ′(t)Sp
ρ(t)S′p

dt

 ,
for j = jn(x) = max

{
j : xnj < x

}
.

C. R. Acad. Bulg. Sci., 75, No 9, 2022 1267



Proof. We use Theorem 2.3 to derive reconstruction formula of density
function. After some calculations, we get

lnj =
πp

λ
1/p
n

−

xnj+1∫
xnj

[
ρ1/p(t)− 1

]
dt− 1

pλ
1/p
n

xnj+1∫
xnj

ρ′(t)Sp
ρ(t)S′p

dt

+
1

p2λ
1/p
n

xnj+1∫
xnj

ρ′(t)Sp
ρ(t)S′p

dt+
1

pλ
1/p
n

xnj+1∫
xnj

ρ′(t)Sp
ρ(t)S′p

(
Spp −

1

p

)
dt.

Furthermore,

λ
1/p
n

πp
lnj = 1− λ

1/p
n

πp

xnj+1∫
xnj

ρ1/p(t)dt+
λ
1/p
n

πp
lnj +

(1− p)
p2πp

xnj+1∫
xnj

ρ′(t)Sp
ρ(t)S′p

dt

+
1

pπp

xnj+1∫
xnj

ρ′(t)Sp
ρ(t)S′p

(
Spp −

1

p

)
dt.

Then, we can use similar technique as those in [9] for j = jn(x) = max
{
j : xnj < x

}
to indicate

λ
1/p
n

πp

xnj+1∫
xnj

ρ1/p(t)dt→ ρ1/p(x),

and

1

pπp

xnj+1∫
xnj

ρ′(t)Sp
ρ(t)S′p

(
Spp −

1

p

)
dt→ 0,

pointwise convergent almost everywhere. Hence, we get

ρ1/p(x) = lim
n→∞

1 + (1− p)
p2πp

xnj+1∫
xnj

ρ′(t)Sp
ρ(t)S′p

dt

 .

4. Conclusion. String equation has a very important place in physics. In
the meantime, roughly speaking, string theory replaces point particles by strings,
which can be either open or closed. In the classical sense, many results have been
obtained regarding this equation. In this study, the classical equation is written in
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Laplacian form and the inverse problem is solved by using Prüfer transform under
some boundary conditions. Obtained results generalize the classical situation.
These results can be used to solve some important problems in spectral theory.
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