GENETIC POLYMORPHISMS IN BULGARIAN CHILDREN WITH NONALCOHOLIC FATTY LIVER DISEASE

Denitza Kofinova#, Iglika Yordanova*, Petyo Hadzhiyski, Rayna Shentova-Eneva, Mila Baycheva, Albena Todorova*, Daniela Avdjieva-Tzavella**

Received on February 7, 2022
Presented by B. Petrunov, Member of BAS, on February 24, 2022

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a multifactorial, highly prevalent liver disease in children. There is growing evidence that some genetic variants are associated with its development and rapid progression. The aim of this study was to assess the prevalence of specific single-nucleotide polymorphisms – PNPLA3 I148M, GCKR P446L, TM6SF2 E167K in Bulgarian children with NAFLD.

We conducted a single-centre, prospective study of 32 children (22 patients with NAFLD and 10 healthy controls). Genetic testing and abdominal ultrasound were performed in all study participants. In the patients with NAFLD were additionally analyzed anthropometric parameters and standard biochemical tests, 10 of them underwent a liver biopsy for assessing disease activity and fibrosis.

The most common polymorphism was GCKR P446L, detected in 75% of the studied population, followed by PNPLA3 I148M (50.0% of the studied population) and TM6SF2 E167K (9.4% of the studied population). The GCKR P446L gene variant was more common in patients with NAFLD than in healthy controls (86.4% vs. 50.0%, p = 0.03). Furthermore, significantly more patients with NAFLD were homozygous carriers of GCKR P446L compared to healthy controls.

#Corresponding author.
The authors received funding from Medical University Sofia, Grant “Young Investigator” 2017, Project No 8542/12.12.2016, Contract No D-142 for the research.
DOI:10.7546/CRABS.2022.06.16
controls (54.5% vs. 10.0%, \(p = 0.025 \)). Both patients with histologically proven significant liver fibrosis were carriers of GCKR P446L.

In the present study we found a high prevalence of GCKR P446L polymorphism among children with NAFLD, suggesting that this gene variant is associated with development of NAFLD in the Bulgarian pediatric population.

Key words: children, GCKR P446L, NAFLD, PNPLA3 I148M, TM6SF2 E167K

Introduction. The term non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of diseases that ranges from non-alcoholic fatty liver to non-alcoholic steatohepatitis, NAFLD with fibrosis or NAFLD with cirrhosis. Pediatric NAFLD is defined as chronic hepatic steatosis in children, which is not secondary to genetic/metabolic disorders, infections, use of steatogenic medications, ethanol consumption, or malnutrition \(^1\). NAFLD is a common disease in children. The prevalence rate varies between 3% and 10% depending on method of detection, which may include screening by alanine aminotransferase, imaging for steatosis, or confirmation by liver biopsy \(^1,2\). In Europe NAFLD shows still an increasing trend that parallels the rising prevalence of obesity in the pediatric population \(^2,3\). However, obesity is only one of the predisposing factors to NAFLD \(^2\) Recent studies in adults and children showed that some genetic variants in the patatin-like phospholipase domain containing protein 3 (PNPLA3), glucokinase regulatory protein (GCKR) and transmembrane 6 superfamily member 2 (TM6SF2) genes are associated with development of NAFLD and play a key role in the disease progression \(^4,5\). The aim of this study was to assess the prevalence of specific single-nucleotide polymorphisms – PNPLA3 I148M, GCKR P446L and TM6SF2 E167K in Bulgarian pediatric patients with NAFLD.

Materials and methods. This was a single-centre prospective study conducted at the Department of Gastroenterology and Hepatology, at University Pediatric Hospital “Prof. Dr. Ivan Mitev” Sofia, between September 2016 and November 2018. The inclusion criteria were: age below 18 years and diagnosis of NAFLD, defined by ultrasound examination after exclusion of viral and autoimmune hepatitis, Wilson’s disease, metabolic liver disease and drug-induced liver injury. A group of healthy volunteers was also recruited.

Standard tests. Standard anthropometric measures and laboratory tests were performed in all patients with NAFLD. In addition, in all of them was calculated a homeostatic model assessment for insulin resistance (HOMA – IR), using the following formula: HOMA-IR = fasting plasma glucose (mmol/l) × fasting serum insulin (\(\mu \)IU/ml)/22.5. Insulin resistance (IR) was defined as a value of HOMA-IR > 2.5. All study participants were examined by abdominal ultrasonography.

Liver biopsy and histology. Ten of the children with NAFLD underwent a liver biopsy. It was performed on the same day with the ultrasound examination. All of the specimens contained at least 5 portal spaces and were stained with
hematoxylin-eosin and with Masson trichrome for the evaluation of fibrous tissues. Liver fibrosis and necroinflammatory activity were evaluated using the META VIR scoring system.

Genetic tests. Blood samples of the patients were taken after written informed consent from their parents was obtained. Genomic DNA was extracted from peripheral white blood cells according to standard salting-out procedure. PCR amplification with specific primer pairs for variants in the genes PNPLA3 (c.444C>G, p.I148M), GCKR (c.1337C>T, p.P446L) and TM6SF2 (c.499C>T, p.E167K) was performed (Primer sequences available upon request) followed by direct sequencing using BigDye Terminator v.3.1 Cycle Sequencing kit (Applied Biosystems, Foster city, CA). The sequencing profiles are interpreted by the software Sequencing Analysis v.5.1.1.

Statistical analysis. Statistical analysis was performed by using software (SPSS version 13.0). The difference between the NAFLD and the control group was analyzed using a Fisher’s exact test or Chi-squared test, as appropriate. *P*-values < 0.05 were defined as statistically significant level.

Ethics. This study was approved by the Ethics Committee of the Medical University of Sofia (Permit Number 10/16.03.2017) and all research activities were conducted in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individuals participating in the study.

Results. Twenty-two patients with NAFLD (fifteen boys and seven girls) and ten healthy controls (five boys and five girls) took part in the study. The mean age of the study participants was 10.53±3.78 years. Twenty-one of the patients were obese (BMI-for-age > 95th percentile) and one was overweight (BMI-for-age > 85th percentile). Liver synthetic function in all NAFLD patients was normal. Twelve (54.54%) of the NAFLD patients had elevated ALT and six (27.27%) elevated AST. The anthropometric and laboratory characteristics of the children with NAFLD are shown in Table 1.

The GCKR P446L gene polymorphism was found in 75.0% (24/32) of the study participants (homo-or heterozygous carriers). It was more common in patients with NAFLD than in healthy controls (86.4% vs. 50.0%, *p* = 0.03). Significantly more patients with NAFLD were homozygous carriers of GCKR P446L compared to healthy controls (54.5% vs. 10.0%, *p* = 0.025). One patient who was homozygous carrier of GCKR P446L had also low glucose levels 2 mmol/l. PNPLA3 I148M was detected in 50% (16/32) of the study participants. It was less common in the patients with NAFLD than in healthy controls (40.9% vs. 70.0%, *p* = 0.1331). TM6SF2 E167K was the rarest genetic variant in the study population, only 3 children (2 patients and 1 healthy child) were carriers. The frequencies of the genetic polymorphisms are presented in Table 2.
Table 1

Characteristics of 22 patients with NAFLD

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Median</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>22</td>
<td>10.36</td>
<td>10.00</td>
<td>3.06</td>
<td>4.00</td>
<td>17.00</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>22</td>
<td>63.62</td>
<td>61.65</td>
<td>17.99</td>
<td>26.00</td>
<td>102.40</td>
</tr>
<tr>
<td>Height, cm</td>
<td>22</td>
<td>147.97</td>
<td>147.95</td>
<td>17.09</td>
<td>116.00</td>
<td>177.50</td>
</tr>
<tr>
<td>BMI</td>
<td>22</td>
<td>28.47</td>
<td>28.15</td>
<td>3.65</td>
<td>19.30</td>
<td>35.90</td>
</tr>
<tr>
<td>BMI, Pe</td>
<td>22</td>
<td>98.30</td>
<td>99.30</td>
<td>2.98</td>
<td>91.00</td>
<td>99.80</td>
</tr>
<tr>
<td>ASAT, IU/l</td>
<td>22</td>
<td>30.86</td>
<td>26.5</td>
<td>15.27</td>
<td>14.00</td>
<td>65.00</td>
</tr>
<tr>
<td>ALAT, IU/l</td>
<td>22</td>
<td>42.22</td>
<td>30.50</td>
<td>29.65</td>
<td>11.00</td>
<td>105.00</td>
</tr>
<tr>
<td>γ-glytamil-transferase, IU/l</td>
<td>22</td>
<td>24.95</td>
<td>20.00</td>
<td>20.04</td>
<td>5.00</td>
<td>82.00</td>
</tr>
<tr>
<td>Alkaline phosphatase, IU/l</td>
<td>22</td>
<td>237.50</td>
<td>239.50</td>
<td>82.04</td>
<td>80.00</td>
<td>443.00</td>
</tr>
<tr>
<td>Cholesterol, mmol/l</td>
<td>22</td>
<td>4.16</td>
<td>4.09</td>
<td>0.88</td>
<td>2.38</td>
<td>5.83</td>
</tr>
<tr>
<td>HDL-Cholesterol, mmol/l</td>
<td>22</td>
<td>1.24</td>
<td>1.15</td>
<td>0.49</td>
<td>0.74</td>
<td>3.10</td>
</tr>
<tr>
<td>LDL-Cholesterol, mmol/l</td>
<td>22</td>
<td>2.28</td>
<td>2.43</td>
<td>0.74</td>
<td>0.99</td>
<td>3.62</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>22</td>
<td>1.39</td>
<td>1.25</td>
<td>0.82</td>
<td>0.5</td>
<td>3.8</td>
</tr>
<tr>
<td>Glucose, mmol/l</td>
<td>22</td>
<td>4.94</td>
<td>5.08</td>
<td>0.92</td>
<td>2</td>
<td>6.3</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>22</td>
<td>5.32</td>
<td>4.09</td>
<td>3.28</td>
<td>0.69</td>
<td>15.34</td>
</tr>
</tbody>
</table>

Table 2

Frequencies of genetic polymorphisms PNPLA3 I148M, GCKR P446L, TM6SF2 E167K in patients with NAFLD and healthy controls

<table>
<thead>
<tr>
<th>Genes</th>
<th>NAFLD Patients</th>
<th>Healthy controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percentage</td>
</tr>
<tr>
<td>PNPLA3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I148M homozygous</td>
<td>7</td>
<td>31.8%</td>
</tr>
<tr>
<td>I148M heterozygous</td>
<td>2</td>
<td>9.1%</td>
</tr>
<tr>
<td>Wild type</td>
<td>13</td>
<td>59.1%</td>
</tr>
<tr>
<td>GCKR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P446L homozygous</td>
<td>12</td>
<td>54.55%</td>
</tr>
<tr>
<td>P446L heterozygous</td>
<td>7</td>
<td>31.82%</td>
</tr>
<tr>
<td>Wild type</td>
<td>3</td>
<td>13.63%</td>
</tr>
<tr>
<td>TM6SF2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E167K homozygous</td>
<td>1</td>
<td>4.55%</td>
</tr>
<tr>
<td>E167K heterozygous</td>
<td>1</td>
<td>4.55%</td>
</tr>
<tr>
<td>Wild type</td>
<td>20</td>
<td>90.9%</td>
</tr>
</tbody>
</table>
Most of the patients who underwent a liver biopsy had mild fibrosis or no fibrosis. Only two of them had significant fibrosis. Patient N1, a 10-year-old boy, was homozygous carrier of PNPLA3 I148M and heterozygous carrier of GCKR P446L. Patient N2, a 9-year-old girl, was a heterozygous carrier of GCKR P446L.

We could not find any significant associations between the prevalence of specific gene variants and the laboratory findings.

Discussion. In addition to environmental factors, recent studies suggested that genetic factors are also involved in the development and progression of NAFLD \[^{4,5}\]. In this study we assessed the prevalence of three genetic polymorphisms associated with NAFLD in Bulgarian pediatric patients with NAFLD and in healthy controls. To the best of our knowledge, this study is the first investigation of the prevalence of PNPLA3 I148M, GCKR P446L and TM6SF2 E167K among children in our country.

We found that GCKR P446L was the most common polymorphism, detected in 75% of the studied population, followed by PNPLA3 I148M (50.0% of the studied population) and TM6SF2 E167K (9.4% of the studied population). GCKR P446L was also the most frequent polymorphism in patients with NAFLD, identified in 86.4% of them, followed by the PNPLA3 I148M and TM6SF2 E167K, identified in 40.9% and 9.1%, respectively. Similar to other authors we found that the prevalence of GCKR P446L (homo- or heterozygous state) was significantly higher in patients with NAFLD compared to healthy controls \[^{6,7}\]. Although GCKR P446L gene polymorphism has been reported to be associated with hypoglycemia \[^{8}\], low glucose levels were detected in only one patient from our cohort, who was homozygous carrier of GCKR P446L.

In 2019 Karamfilova et al. \[^{9}\] investigated the prevalence of PNPLA3 I148M variant in 208 adult Bulgarian patients with NAFLD. Being in agreement with our results they demonstrated that 37% of the participants were homozygous carrier and 4.8% were heterozygous carrier of the polymorphism \[^{9}\].

TM6SF2 E167K was the rarest genetic variant in our cohort, identified in two patients with NAFLD and in one healthy child. These findings are in line with previous observations among adult Bulgarian patients with NAFLD \[^{10}\]. Karamfilova et al. found that only 11% of the investigated patients were heterozygous carriers of TM6SF2 E167K, no homozygous carriers were detected. Based on these data we may speculate that TM6SF2 E167K is generally less common in the Bulgarian population in comparison to PNPLA3 I148M and GCKR P446L polymorphisms.

Our study has several limitations. One of the limitations is the small sample size. Our preliminary findings should be confirmed in larger cohorts. Another limitation of the study is that we did not perform a liver biopsy in all children with NAFLD.

Conclusions. In conclusion, this study showed a high prevalence of GCKR P446L polymorphism among children with NAFLD, suggesting that this gene
variant is associated with development of NAFLD in the Bulgarian pediatric population.

REFERENCES

[4] European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease (2016) J. Hepatol., 64(6), 1388–1402.

Department of Pediatric Gastroenterology
and Hepatology
University Pediatric Hospital “Prof. Dr. Ivan Mitev”
11 Akad. Ivan Evstratiev Geshov Blvd
1606 Sofia, Bulgaria
and
Department of Pediatrics
Medical University of Sofia
15 Akad. Ivan Evstratiev Geshov Blvd
1431 Sofia, Bulgaria
e-mail: kofinova@abv.bg
dr.hadjiiski@abv.bg
rshentova@yahoo.com
mila.baycheva@gmail.com

*Genetic Medico-Diagnostic Laboratory Genica
84 Ami Boue St
1612 Sofia, Bulgaria
and
Department of Medical Chemistry and Biochemistry
Medical University of Sofia
15 Akad. Ivan Evstratiev Geshov Blvd
1431 Sofia, Bulgaria
e-mail: todorova_albena@abv.bg
yordanova.iglika@gmail.com

Department of Clinical Genetics
University Pediatric Hospital “Prof. Dr. Ivan Mitev”
11 Akad. Ivan Evstratiev Geshov Blvd
1606 Sofia, Bulgaria
and
Department of Pediatrics
Medical University of Sofia
15 Akad. Ivan Evstratiev Geshov Blvd
1431 Sofia, Bulgaria e-mail: davdjieva@yahoo.com