IRON METABOLISM DYSREGULATION AND ATHEROSCLEROTIC CHANGES IN OBSTRUCTIVE SLEEP APNOEA

Georgi Angov*****, Todor Kunchev****, Kamen Tzatchev,
Latchezar Traykov******, Ventsislava Pencheva*

Received on October 15, 2020
Accepted on October 29, 2020

Abstract

The Syndrome of obstructive sleep apnoea (OSA) is associated with an increased risk of arterial hypertension, metabolic syndrome, diabetes mellitus type 2, brain-vascular damages and atherosclerosis.

The aim of this study is to assess the connection between iron metabolism dysregulation in OSA and atherosclerotic changes of carotid arteries.

Thirty-five OSA patients with brain-vascular atherosclerotic evidences were included in this study; changes were evaluated by carotid artery intima-media thickness (IMT) and flow-mediated dilatation (FMD). Their results were compared to an equal number of healthy volunteers. Haematological and biochemical assays were performed in all participants in the study.

Serum hepcidin levels are statistically significantly increased in OSA patients with atherosclerotic a. carotis changes (101.9 ± 10.1 µg/L) compared to the control group (18.5 ± 2.5 µg/L); P < 0.001. Serum homocysteine levels are significantly higher in OSA than in healthy people. Average IMT (1.22 ± 0.19) and ABI (1.71 ± 0.14) values in OSA patients with atherosclerotic a. carotis changes are increased in comparison to the control group (0.34±0.07, 1.11±0.06,

This project is implemented with the financial support of the Medical University – Sofia, as a part of GRANTs programs “Grant 2018”, Contract No. D-52/2018.
DOI:10.7546/CRABS.2023.10.17

1625
Serum vitamin B12 levels were lower in OSA patients with atherosclerotic changes in carotid arteries (71.7 ± 9.9 pmol/L) compared to the controls (449.7 ± 21.4 pmol/L); $P < 0.001$. A connection between iron homeostasis and atherosclerotic changes was established during this study. Increased hepcidin and homocysteine concentrations might be connected to an elevated risk of cardio- and brain-vascular diseases in OSA. The use of these markers in the routine practice may be very useful for early atherosclerosis assessment in OSA.

Key words: hepcidin, atherosclerosis, obstructive sleep apnoea, homocysteine, vitamin B12

Introduction. Syndrome of obstructive sleep apnoea (OSA) is represented by symptoms caused by intermittent restriction and/or total obstruction of airflow through the upper respiratory tract during sleep. Epidemiologically increased morbidity from OSA is established \[1\]. Main OSA symptoms are daily drowsiness, disrupted concentration and motivation, difficulties in routine tasks performances, irritability, decreased libido, chronic fatigue, inadequate rest, restless sleep, snoring, and nocturia. During desaturation episodes, the organism is a subject of chronic stress. These changes lead to an increased frequency of occurrence of arterial hypertension, metabolic syndrome, diabetes mellitus type 2, and increased risk of brain-vascular damages \[2,3\]. High-sensitivity-CRP (hsCRP) is a relevant marker for inflammation in obstructive sleep apnoea patients \[4\].

Hepcidin-25 is an amino-peptide that regulates iron homeostasis through its duodenal absorption \[5\]. Hepcidin’s main function is performed by its interaction to the only known intracellular iron exporter, named ferroportin \[6\]. Increased hepcidin concentrations might be a risk of cardio-vascular disorders through iron mobilization in macrophages; iron turns them into atherogenic \[7\]. Different studies show the role of hepcidin in atherogenesis in dialysis patients \[8\].

Homocysteine is exclusively formed from methionine (Met) through the transmethylation pathway \[9\]. Elevated homocysteine is an independent, modifiable risk factor for atherosclerotic cardio-vascular diseases \[10,11\].

The aim of our study is to assess the connection between iron metabolism dysregulation in OSA and atherosclerotic changes of carotid arteries.

Materials and methods. Thirty-five OSA patients with brain-vascular atherosclerotic evidences were included in this study. The average age of the included OSA patients was 41.3 ± 5.8 years. The average age for the control group was similar – 42.1 ± 6.1 years. The study sets on the ethical principles of the Helsinki declaration and was approved by the review board and the local ethics committee of Medical University – Sofia, Bulgaria. The atherosclerotic changes were evaluated by intima-media thickness (IMT) of a. carotis and flow-mediated dilatation (FMD), representing main part of non-invasive measurements of atherosclerosis (NIMA). Their results were compared to an equal number of healthy volunteers without OSA and atherosclerotic changes in carotid arter-

V. Manolov, O. Georgiev, V. Vasilev et al.
ies. Complete blood count (CBC), erythrocyte indices (MCV, MCH, MCHC), serum iron and total iron-binding capacity (TIBC), serum transferrin, ferritin and hepcidin were quantified for iron metabolism evaluation. Homocysteine, hsCRP, vitamin B12, liver enzymes, Lactate dehydrogenase (LDH), fasting glucose and creatinine were measured in included OSA patients and the control group. For hematological, biochemical and immunological parameters analyzers by Siemens Healthineers Diagnostics were used. Hepcidin was quantified by previously validated ELISA method. During statistical analysis established results were presented as average value ± SD for parametric distribution. Pearson’s correlation and paired t-test were used for the evaluation of significance and correlation between values. A level of $P < 0.05$ was considered statistically significant.

Results. Table 1 presents serum hepcidin concentration in the included groups – patients with OSA and atherosclerotic changes in carotid arteries and healthy volunteers.

Serum hepcidin levels are statistically significantly increased in OSA patients with atherosclerotic changes in carotid arteries compared to the control group; $P < 0.001$.

Table 1

Benchmarking of serum hepcidin concentration in OSA patients with atherosclerotic changes in carotid arteries (ATH) and healthy controls expressed as average value (in µg/L) and standard deviation

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>\bar{x}</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSA with ATH</td>
<td>35</td>
<td>101.9</td>
<td>10.1</td>
</tr>
<tr>
<td>Healthy controls</td>
<td>35</td>
<td>18.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Table 2

Benchmarking of serum biochemical parameters, IMT and ABI in OSA patients with atherosclerotic changes in carotid arteries (ATH) and healthy controls expressed as average value and standard deviation

<table>
<thead>
<tr>
<th>Group parameter</th>
<th>Controls</th>
<th>OSA with ATH</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron (µmol/l)</td>
<td>17.7 ± 2.2</td>
<td>32.7 ± 8.5</td>
<td>$P < 0.001$</td>
</tr>
<tr>
<td>TIBC (µmol/l)</td>
<td>60.3 ± 8.1</td>
<td>64.1 ± 4.4</td>
<td>$P < 0.5$</td>
</tr>
<tr>
<td>TRSF (g/l)</td>
<td>2.1 ± 0.3</td>
<td>3.1 ± 0.4</td>
<td>$P < 0.01$</td>
</tr>
<tr>
<td>Ferritin (ng/ml)</td>
<td>117.4 ± 5.9</td>
<td>279.4 ± 25.7</td>
<td>$P < 0.001$</td>
</tr>
<tr>
<td>hsCRP (ng/ml)</td>
<td>0.9 ± 0.3</td>
<td>14.7 ± 1.3</td>
<td>$P < 0.001$</td>
</tr>
<tr>
<td>Homocysteine (µmol/l)</td>
<td>1.1 ± 0.3</td>
<td>29.1 ± 3.6</td>
<td>$P < 0.001$</td>
</tr>
<tr>
<td>Vitamin B12 (pmol/l)</td>
<td>449.7 ± 21.4</td>
<td>71.7 ± 9.9</td>
<td>$P < 0.001$</td>
</tr>
<tr>
<td>IMT</td>
<td>0.34 ± 0.07</td>
<td>1.22 ± 0.19</td>
<td>$P < 0.001$</td>
</tr>
<tr>
<td>ABI</td>
<td>1.11 ± 0.06</td>
<td>1.71 ± 0.14</td>
<td>$P < 0.01$</td>
</tr>
</tbody>
</table>

TIBC – total iron-binding capacity; TRSF – transferrin; hsCRP – high sensitive C-reactive protein; IMT – intima-media thickness, ABI – ankle-brachial index

Table 2 presents evaluated biochemical parameters, IMT and ABI in OSA patients with atherosclerotic changes in carotid arteries and the control group.

There is a positive correlation between serum hepcidin levels and homocysteine in OSA patients with atherosclerotic changes in carotid arteries – level of correlation $r = 0.849$; significance $P < 0.001$ (Fig. 1).

A statistically significant negative relationship between serum hepcidin levels and vitamin B12 is observed in OSA patients with atherosclerotic changes in carotid arteries – level of correlation $r = -0.844$; significance $P < 0.001$ (Fig. 2).

A strongly positive correlation is found between serum hepcidin levels and IMT in OSA patients with atherosclerotic changes in carotid arteries – level of correlation $r = 0.904$; significance $P < 0.001$.

V. Manolov, O. Georgiev, V. Vasilev et al.
There is a positive correlation between serum hepcidin levels and ABI in OSA patients with atherosclerotic changes in carotid arteries as well \((r = 0.922; P < 0.001)\).

Discussion. During desaturation episodes, the organism is a subject of chronic stress, which leads to decreased nitric oxide (NO) levels, increased interleukin-6 and tumour necrotic factor-\(\alpha\) secretion. These changes lead to insulin resistance, arterial hypertension, metabolic syndrome, and others diseases occurrence; the risk of brain-vascular damages increases [2,3].

hcCRP is a relevant marker for inflammation in OSA patients and our study proved it once again [4]. Meta-analysis of 30 studies assessing the relationship between CRP and OSA confirmed that CRP was higher in OSA patients compared to the controls (pooled mean difference 1.77) [12]. In the study of Shamsuzzaman et al. [4], 22 otherwise healthy OSA patients and 20 subjects matched for age and body mass index (BMI) without OSA were included. CRP levels were significantly higher among the former (0.33 vs. 0.09 mg/dL, \(P < 0.0003\)), and they were independently associated with disease severity. We established increased concentrations of hsCRP in OSA patients with atherosclerotic changes in carotid arteries compared to control group \((P < 0.001)\).

Several studies have reported that elevated plasma levels of total homocysteine are related to an increased risk of cardiovascular disease [13–15]. In our study increased level of serum homocysteine was established in OSA patients with atherosclerotic changes in carotid arteries compared to control group; 1.1 \(\mu\)mol/l vs. 29.1 \(\mu\)mol/l; \(P < 0.001\).

Vitamin B12 deficiency may increase the risk of carotid atherosclerosis by elevating total homocysteine [16,17]. Serum vitamin B12 levels were decreased in OSA patients with atherosclerotic changes in carotid arteries compared to the controls (449.7 ± 21.4 \(\mu\)mol/l vs. 71.7 ± 9.9 \(\mu\)mol/l; \(P < 0.001\)).

In our study NIMA parameters – IMT and ABI were also increased in OSA patients in comparison to healthy volunteers; \(P < 0.001\). Similar results were obtained by Szabóová et al. [18]. They found that IMT (max) was increased in subjects with mild to moderate OSA alone (AHI = 20.4 ± 8.7/h) vs. healthy controls (0.83 ± 0.14 mm vs. 0.63 ± 0.08 mm, \(P < 0.01\)). Other authors reported similar results [19].

Evaluation of hepcidin is still a novelty in our routine practice although some studies show the role of hepcidin in atherogenesis in OSA patients [20]. Our findings contribute to the clarification of hepcidin’s role in atherosclerotic changes in obstructive sleep apnoea patients, and might be helpful in right therapeutic choice of accompanying metabolic distortions. We established increased serum hepcidin levels in OSA patients with atherosclerotic changes in carotid arteries \((P < 0.001)\). The connection between hepcidin concentration and hepcidin/ferritin ratio with presence of atherosclerotic plaques and ABI, confirms hepcidin role in atherosclerotic process. In our study we found a significant positive correlation between
serum hepcidin levels and ABI and IMT in OSA patients with atherosclerotic changes in carotid arteries ($P < 0.01$ and $P < 0.001$).

Conclusions. A connection between iron homeostasis and atherosclerotic changes in OSA was established during this study. Increased hepcidin and homocysteine concentrations might be connected to an elevated risk of cardio- and brain-vascular diseases occurrence in OSA patients. The use of these markers in the routine practice may be very useful for early atherosclerosis assessment in OSA.

REFERENCES

Department of Clinical Laboratory
Medical Faculty
Medical University – Sofia
1 St. Georgi Sofiiski St
1431 Sofia, Bulgaria
e-mails: vichthedoc@yahoo.com
tzatchev_kam@abv.bg

*Department of Propaedeutics
of Internal Diseases
Medical Faculty
Medical University – Sofia
1 St. Georgi Sofiiski St
1431 Sofia, Bulgaria
e-mails: ogeorgiev@hotmail.com
pencheva.bg@abv.bg

**Clinical Laboratory
Aleksandrovska University Hospital
1 St. Georgi Sofiiski St
1431 Sofia, Bulgaria
e-mails: vassko_66@abv.bg

***Department of Immunology
National Center of Infectious and Parasitic Diseases
2 Bratia Miladinovi St
Sofia, Bulgaria
e-mail: grozdanova_re@abv.bg

****Department of Neurology
Medical Faculty
Medical University – Sofia
1 St. Georgi Sofiiski St
1431 Sofia, Bulgaria
e-mails: jpet1@abv.bg
 angov_g@abv.bg
 kunchev_tod@abv.bg
 traykov_lat@abv.bg

****Department of Medical Genetics
Medical Faculty
Medical University – Sofia
1 St. Georgi Sofiiski St
1431 Sofia, Bulgaria
e-mail: hadjidekova_sav@abv.bg