FINITE GROUPS WHOSE NUMBERS OF REAL-VALUED CHARACTER DEGREES OF ALL PROPER SUBGROUPS ARE AT MOST TWO

Shitian Liu

Received on April 24, 2023
Presented by V. Drensky, Member of BAS, on May 30, 2023

Abstract

Finite groups with real-valued irreducible characters of prime degree are classified by Dolfi, Pacifici and Sanus. In this paper, the structures of finite groups whose all proper subgroups have at most two real-valued-irreducible-character degrees are determined.

Key words: simple group, character value, proper subgroup

2020 Mathematics Subject Classification: 20C15, 20D06

1. Introduction. All groups G that are considered are finite. The set of complex irreducible characters of G is denoted by $\text{Irr}(G)$ and the set of character degrees of G is written by $\text{cd}(G)$. The groups with two irreducible character degrees are classified; see $[1,2]$. As a generalization of $[1,2]$, Noritsch in $[3]$ considered finite groups with three complex irreducible character degrees.

In the following, the degree means the real-valued irreducible character degree.

Finite groups with few character values are classified by some scholars; see $[4-6]$ for example. In particular, Iwasaki in $[7]$ studied the structure of a finite group G concerning the number of real-valued irreducible characters and characterized the structure of finite groups with exactly two real-valued irreducible characters.

The project was supported by NSF of China (Grant No: 11871360), and by the Project of High-Level Talent of Sichuan University of Arts and Science (Grant No: 2021RC001Z).

DOI:10.7546/CRABS.2023.07.02
Let $\text{Irr}_{rv}(G)$ be the set of real-valued irreducible characters of a group G and let $\text{cd}_{rv}(G)$ be the set of real-valued-irreducible-character degrees, i.e.

$$\text{cd}_{rv}(G) = \{\chi(1) : \chi \in \text{Irr}_{rv}(G)\}.$$

Recently, the author and others considered the relation between the degrees of proper subgroups and group structure; see [8] and [9] for instance. We also consider the impact of the properties of the proper subgroups on the structure of finite group. Let $\sum G$ be the set of all proper subgroups of a group G. Then $\text{cd}_{rv}(G)$ is a subset of $\text{cd}(G)$. Obviously an abelian group satisfies $\text{cd}_{rv}(G) = \text{cd}(G)$. In this paper, we first consider the influence of the number of degrees on the structure of finite groups. To say in brief, we introduce the following concept.

Definition 1.1. A group G is called a TR-group if $|\text{cd}_{rv}(G)| \leq 2$.

Finite groups with $\text{cd}(G) = \{1, m\}$ are classified ([10], Theorem 12.5). Corresponding to [1, 2, 10], we first show the following result.

Theorem 1.2. A finite TR-group is solvable.

In order to argue in short, we introduce the following definition.

Definition 1.3. A group G is called a PTR-group if each $H \in \sum G$ is a TR-group.

Now we have the following result.

Theorem 1.4. Let G be a non-solvable PTR-group. Then G is isomorphic to either $\text{PSL}_2(q)$, where either $q = 2^p$ with p a prime or $q = 3^p$ with p an odd prime and $q \equiv \pm 3 \pmod{10}$ or $q = p$ a prime with $q \equiv \pm 3 \pmod{8}$ or $S_3(2^p)$ with p an odd prime.

2. Basic results. In this section, some elementary results are collected.

Lemma 2.1. Let G be a PTR-group.

(1) Let $N \in \sum G$. Then N is a TR-group.

(2) If $1 \neq N \in \sum G$ is normal in G, then G/N is a TR-group.

Proof. It is easy to get from Definition of a PTR-group and the fact $\text{cd}_{rv}(G/N) \subset \text{cd}_{rv}(G)$. The following result can be used to shorten the proof of main theorem.

Lemma 2.2 ([9], Corollary 1). Every minimal simple group is isomorphic to one of the following minimal simple groups:

(1) $\text{PSL}_2(2^p)$ for p a prime;

(2) $\text{PSL}_2(3^p)$ for p an odd prime;

(3) $\text{PSL}_2(p)$, for p any prime exceeding 3 such that $p^2 + 1 \equiv 0 \pmod{5}$;

(4) $S_3(2^p)$ for p an odd prime;

(5) $\text{PSL}_3(3)$.

C. R. Acad. Bulg. Sci., 76, No 7, 2023
Lemma 2.3. Let G be a Frobenius group of the form $E_p^n : C_m$ with kernel E_p^n, the elementary abelian p-group of order p^n and complement C_m, the cyclic group of order m. Assume that $|G|$ is even, then G has an irreducible real character of degree m.

Proof. It follows from Theorem 13.9(b) of [11].

Lemma 2.4. Let G be a dihedral group D_{2m}. Then G is a TR-group.

Proof. It is easy to see from the fact $cd(G) = \{1, 2\}$.

Lemma 2.5. Let G be a finite group of even order.

1. If $\exp(G,d)$ is odd, then at least one of the $\chi \in \text{Irr}(G)$ of degree d is real.

 In particular, if $\exp(G,d) = 1$, then the $\chi \in \text{Irr}(G)$ of degree d is real.

2. If $\exp(G,d)$ is even, then for $\chi \in \text{Irr}(G)$ with $\chi(1) = d$, there is a pair $(\chi, \overline{\chi})$ which is either real or non-real.

Proof. It follows from [12].

3. Solvability of TR-groups. In this section we will show the proof of Theorem 1.2.

Let $cd_e(G) = \{[\chi_1, 1], [\chi_2, \chi_2(1)], \ldots, [\chi_s, \chi_s(1)]\}$, where $\chi_i \in \text{Irr}_{rv}(G)$.

To prove Theorem 1.2, the following information is taken from [13].

Lemma 3.1. (1) Let $s = p^n$, $p > 2$. Then

if $s \equiv -1 \pmod 4$,

$$cd_{e}(\text{PSL}_2) = \{[\chi_1, 1], [\chi_2, s], [\chi(R^a), s + 1], [\chi(S^b), s - 1]\},$$

$$cd_{e}(\text{SL}_2) = \{[\chi_1, 1], [\chi_2, s], [\chi_m, s + 1], [\chi_n, s + 1],$$

$$[\chi(R^a), s - 1], [\chi(S^b), s - 1]\};$$

if $s \equiv 1 \pmod 4$,

$$cd_{e}(\text{PSL}_2) = \{[\chi_1, 1], [\chi_2, s], [\chi_{\mu}, s + 1], [\chi(R^a), s + 1],$$

$$[\chi(S^b), s - 1]\};$$

$$cd_{e}(\text{SL}_2) = \{[\chi_1, 1], [\chi_2, s], [\chi_m, s + 1], [\chi_n, s + 1],$$

$$[\chi_{\mu}, s + 1], [\chi(R^a), s - 1], [\chi(S^b), s - 1]\}.\]$$

(2) Let $s = 2^n$. Then

$$cd_{e}(\text{PSL}_2) = \{[\chi_1, 1], [\chi_2, s], [\chi(R^a), s + 1], [\chi(S^b), s - 1]\}.\]

Proof. It follows from ([13], p. 401–403).

Let $\exp(G,d)$ be the number of irreducible characters with the same degree d. In order to read at hand, we rewrite Theorem 1.2 here.

Theorem 3.2. A finite TR-group is solvable.
Proof. Assume that the result is not true, then we can assume that G is non-sovable, but its maximal subgroups are solvable. Now Lemma 2.2 gives the possibilities for G. Thus the following three cases are done with.

Case 1: $\text{PSL}(2,q)$ for $q \geq 4$.

By Lemma 3.1, we have that $\lvert \text{cd}_v(G) \rvert > 2$, a contradiction.

Case 2: $\text{Sz}(2^p)$ for p an odd prime. Let $q = 2^p$. By $[1^4]$, $\exp(\text{Sz}(q), 1) = 1$, $\exp(\text{Sz}(q), q) = 1$ and $\exp(\text{Sz}(q), q^2 + 1) = \frac{q - 2}{2}$. Note that $\frac{q - 2}{2}$ is odd, so by Lemma 2.5, the irreducible characters $\chi_i, i = 1, 2, 3$ are real-valued, where $\chi(1) = 1, \chi_2(1) = q^2, \chi_3(1) = q^2 + 1$. So $\text{Sz}(q)$ is a non-TR-group.

Case 3: $\text{PSL}_3(3)$.

From $([15], p. 13)$, we have that χ_1, χ_2, χ_3 are real-valued characters with $\chi_1(1) = 1, \chi_2(1) = 12$ and $\chi_3(1) = 13$. So $\text{PSL}_3(3)$ is a non-TR-group.

It follows from the above three cases that G is solvable. □

4. Non-sovable PTR-groups. In this section, the structures of PTR-groups are determined. Denote by $\max G$ the set of all maximal subgroups of G with respect to its subgroup order divisibility.

The following information is used $[1^5, 1^6]$.

Lemma 4.1. $\text{cd}_v(A_4) = \{[x_1, 1], [x_4, 3]\}$; $\text{cd}_v(S_4) = \{[x_1, 1], [x_2, 1], [x_3, 2], [x_4, 3], [x_5, 3]\}$; $\text{cd}_v(A_5) = \{[x_1, 1], [x_2, 3], [x_3, 3], [x_4, 4], [x_5, 5]\}$.

Lemma 4.2. Let G be a non-abelian PTR-group. Then one of the following holds:

1. G is isomorphic to $\text{PSL}_2(q)$, where either $q = 2^p$ with p a prime or $q = 3^p$ with p an odd prime and $q \equiv \pm 3 \pmod{10}$ or $q = p$ a prime with $q \equiv \pm 3 \pmod{8}$;

2. G is isomorphic to $\text{Sz}(2^p)$ with p an odd prime.

Proof. By Lemma 2.1, $H \in \sum G$, H is a TR-group, so by Lemma 1.2, H is solvable. It follows that G is a non-sovable group but its subgroups are solvable. So by Lemma 2.2, the following five cases are considered.

| Table 1 |
|-------------------|---------------|
| $\text{max } \text{PSL}_2(q)$ | Condition |
| C_1 | $E_q : C_{q-1/1}$ | $k = \gcd(q - 1, 2)$ |
| C_2 | $D_{2(q-1)/1}$ | $q \not\in \{5, 7, 9, 11\}$ |
| C_3 | $D_{2(q+1)/1}$ | $q \not\in \{7, 9\}$ |
| C_4 | $\text{PSL}_2(q_0).\langle k, b \rangle$ | $q = q_0^b, b$ a prime, $q_0 \equiv 2$ |
| C_5 | A_4 | $q = p \equiv \pm 1 \pmod{3, 5, 13, 27, 37}$ (mod 40) |
| \mathcal{S} | A_5 | $q \equiv 1 \pmod{10}, \mathcal{F}_a = F_p[\sqrt{5}]$ |

Case 1: $\text{PSL}_2(2^p)$ for p a prime.
Then $k = 1$ and let $q = 2^p$,

$$\max \text{PSL}_2(q) = \{E_q : C_{q-1}, D_{2(q\pm 1)}\}.$$

We see from Lemmas 2.3 and 2.4 that $E_q : C_{q-1}$ and $D_{2(q\pm 1)}$ are TR-groups, so PSL$_2(q)$ is a PTR-group and G is isomorphic to PSL$_2(q)$.

Case 2: PSL$_2(3^p)$ for p an odd prime.

Then $k = 2$. Let $q = 3^p$. Then max PSL$_2(q)$ contains possibly $E_q : C_{(q-1)/2}$, $D_{q\pm 1}$, PSL$_2(3)$ and A_5 as its members. Notice that PSL$_2(3) \cong A_4$, so Lemmas 2.3, 2.4 and 4.1 force that $E_q : C_{(q-1)/2}$, $D_{q\pm 1}$ and PSL$_2(3)$ are TR-groups but A_5 is a non-TR-group. It follows from Table 1 that PSL$_2(q)$ is a PTR-group with $q \not\equiv \pm 1 \pmod{10}$.

Case 3: PSL$_2(p)$, for p any prime exceeding 3 such that $p^2 + 1 \equiv 0 \pmod{5}$.

Then $k = 2$ and $q = p$. By Table 1, max PSL$_2(q)$ has possibly $E_q : C_{(q-1)/2}$, $D_{q\pm 1}$, S_4 and A_4 as its members. By Lemmas 2.3, 2.4 and 4.1, $E_q : C_{(q-1)/2}$ and $D_{q\pm 1}$ are TR-group but S_4 is a non-TR-group. By Table 1, we have $q = p \not\equiv \pm 1 \pmod{8}$, so $q = p \equiv 3, 5, 7 \pmod{8}$. Hypothesis $p^2 + 1 \equiv 0 \pmod{5}$ gives that $q = p \equiv \pm 3 \pmod{8}$. Thus similarly as Case 1, we have that PSL$_2(q)$ is a PTR-group with $q = p \equiv \pm 3 \pmod{8}$.

Case 4: $Sz(2^p)$ for p an odd prime.

Let $q = 2^p$. Then from ([18], p. 385), we have max $Sz(q) = \{E_q^{1+1} : C_{q-1}, D_{2(q-1)}, (q \pm \sqrt{2q} + 1) : 4\}$. Note that

$$\text{cd}_{rv}(E_q^{1+1} : C_{q-1}) = \{1, q - 1\}, \text{cd}_{rv}(D_{2(q-1)}) = \{1, 2\},$$

$$\text{cd}_{rv}((q \pm \sqrt{2q} + 1) : 4) = \{1, 4\},$$

so for all $H \in \max Sz(q)$, H is a TR-group by Lemmas 2.3 and 2.4. It follows that $Sz(q)$ is a PTR-group, so G is isomorphic to $Sz(q)$ with $q = 2^p$, p an odd prime.

Case 5: PSL$_3(3)$.

By ([15], p. 13), $S_4 \in \max$ PSL$_3(3)$. Note from Lemma 4.1 that $\text{cd}_{rv}(S_4) = \{1, 2, 3\}$, so S_4 is a non-TR-group. It follows that PSL$_3(3)$ is a non-PTR-group.

For reading easily, we rewrite Theorem 1.4 here.

Theorem 4.3. Let G be a non-solvable PTR-group. Then G is isomorphic to either PSL$_2(q)$, where either $q = 2^p$ with p a prime or $q = 3^p$ with p an odd prime and $q \equiv \pm 3 \pmod{10}$ or $q = p$ a prime with $q \equiv \pm 3 \pmod{8}$ or $Sz(2^p)$ with p an odd prime.

Proof. The non-solvability of G gives that there is a normal series

$$1 \leq H \leq K \leq G$$

994

S. Liu
such that K/H is isomorphic to a direct product of isomorphic non-abelian simple groups and $|\text{Out}(K/H)||G/K|$, where $\text{Out}(M)$ denotes the outer-automorphism group of a group M; see [19].

Let \mathcal{G} be the set of groups consisting of the following groups:

(i) $\text{PSL}_2(q)$, where either $q = 2^p$ with p a prime or $q = 3^p$ with p an odd prime and $q \equiv \pm 3 \pmod{10}$ or $q = p$ a prime with $q \equiv \pm 3 \pmod{8}$;

(ii) $\text{Sz}(2^p)$ with p an odd prime.

Then K/H is isomorphic to $S \times S \times \cdots \times S$ with $S \in \mathcal{G}$. If $m \geq 2$, then let $M \in \max \mathcal{S}$, $M \times S \times \cdots \times S$ is a maximal subgroup of $S \times S \times \cdots \times S$. Here two cases are dealt with: if $S = \text{PSL}_2(q)$, then by Lemma 3.1, $|\text{cd}_{rv}(S)| \geq 4$; if $S = \text{Sz}(q)$, then by Lemma 2.5 and [14], $\text{cd}_{rv}(\text{Sz}(q)) \supset \{1, q^2, q^2 + 1\}$ (we also can get this result from Case 2 of the proof of Theorem 1.2). It follows that $\text{cd}_{rv}(M \times S \times \cdots \times S) \geq 4$, so $M \times S \times \cdots \times S$ is a non-TR-group. Now $m = 1$ and

G is a non-almost simple group

as when $S < G$, $|\text{cd}_{rv}(S)| \geq 4$. In what follows, we will divide the proof into two cases in view of $S \in \mathcal{G}$.

Case 1: $\text{PSL}_2(q)$, where either $q = 2^p$ with p a prime or $q = 3^p$ with p an odd prime and $q \equiv \pm 3 \pmod{10}$ or $q = p$ a prime with $q \equiv \pm 3 \pmod{8}$.

Based on q, two subcases are done with.

Subcase 1: $q = 2^p$ with p a prime.

In this case, $k = 1$ and

$\text{GL}_2(q) \cong \text{SL}_2(q) \cong \text{PSL}_2(q)$;

see [20]. We know from ([15], p. xvi) that the Schur multiplier of $\text{PSL}_2(q)$ with $q \geq 8$ is trivial and the Schur multiplier of $\text{PSL}_2(4)$ is of order 2.

Let $q = 4$, then G/H is isomorphic to $\text{PSL}_2(4)$. Now by ([17], Chap. II, Theorem 6.10), $G'/H \cong \text{PSL}_2(4) \cong \text{PSL}_2(5)$. Note that $[G', H] \leq C_2$, where $C_2 = Z(\text{SL}_2(5))$, so either $G \cong \text{PSL}_2(4) \times H$ when $[G', H] = 1$ or $G \cong \text{SL}_2(5) \times H$ when $[G', H] = C_2$.

Let $G \cong \text{PSL}_2(4) \times H$. If $H > 1$, then $\text{PSL}_2(4) < G$, so G is a non-PTR-group as $|\text{cd}_{rv}(\text{PSL}_2(4))| = 4$. Thus $H = 1$ and $G \cong \text{PSL}_2(4)$.

Let $G \cong \text{SL}_2(5) \times H$. Then $H \geq C_2$. If $H > C_2$, then $\text{SL}_2(5) < G$, so by Lemma 3.1, $[\text{cd}_H(\text{SL}_2(5))] = 5$ and $\text{SL}_2(5)$ is a non-TR-group. Thus $H = C_2$ and $G \cong \text{SL}_2(5) \times H = \text{SL}_2(5)$. By Table 2, $2.A_4 \in \max \text{SL}_2(5)$. By \[16], $\text{cd}_H(2.A_4) = \{1, 2, 3\}$, and so $2.A_4$ is a non-TR-group. It follows that $\text{SL}_2(5)$ is a non-\(\text{PTR}\)-group.

Now let $q \geq 8$, then $G \cong \text{PSL}_2(q) \times H$ as above similar arguments. If $H \neq 1$, then $\text{PSL}_2(q) < G$ is a TR-group, a contradiction to Lemma 3.1. Thus $H = 1$.

So in this subcase, G is isomorphic to $\text{PSL}_2(q)$ with $q = 2^p$, and p a prime.

Subcase 2: $q = 3^p$ with p an odd prime and $q \equiv \pm 3 \pmod{10}$ or $q = p$ a prime with $q \equiv \pm 3 \pmod{8}$.

Then by \[15], p. xvi), the Schur multiplier of $\text{PSL}_2(q)$ with $q \neq 9$ odd is of order two. Note that G is not an almost simple group, so $G/H \cong \text{PSL}_2(q)$, where $q = 3^p$ with p an odd prime and $q \equiv \pm 3 \pmod{10}$ or $q = p$ a prime with $q \equiv \pm 3 \pmod{8}$. Similarly as Subcase 1, we can get that G is isomorphic to $\text{PSL}_2(q) \times H$ or $\text{SL}_2(q) \ast H$.

Let $G \cong \text{PSL}_2(q) \times H$. Let $H \neq 1$. Then $\text{PSL}_2(q) < G$ and $\text{PSL}_2(q)$ is a TR-group, a contradiction to Lemma 3.1. Now $H = 1$ and $G \cong \text{PSL}_2(q)$ as wanted.

Let $G \cong \text{SL}_2(q) \ast H$. Then $H \geq C_2$, where $C_2 = Z(\text{SL}_2(q))$. If $H > C_2$, then $\text{SL}_2(q) \in \sum G$ and by Lemma 2.1, $\text{SL}_2(q)$ is a TR-group, a contradiction to Lemma 3.1. So $H = C_2$ and $G \cong \text{SL}_2(q) \ast H = \text{SL}_2(q)$.

If $q = 3^p$, then by Table 2, $\text{SL}_2(3) \in \sum \text{SL}_2(3^p)$. We know that $\text{SL}_2(3) \cong S_4$.
so by [16] or Lemma 3.1, \(\text{cd}_{rv}(\text{SL}_2(3)) = \{1, 2, 3\}\). It follows that \(\text{SL}_2(3)\) is a non-TR-group and \(\text{SL}_2(3^p)\) is a non-PTR-group.

If \(q = p\) is a prime, then by Table 2, the groups \(2.A_4\), \(2.S_4\) and \(2.A_5\) are involved possibly in \(\max \text{SL}_2(q)\), so there is no prime satisfying the three inequations

\[
q = p \not\equiv 1 \pmod{8}
q = p \not\equiv 1 \pmod{10}
q = p \not\equiv \pm 3, 5, \pm 13 \pmod{40}.
\]

Thus \(\text{SL}_2(q)\) with \(q\) a prime is a non-PTR-group.

Case 2: \(Sz(2^p)\) with \(p\) an odd prime.

Now we get from ([15], p. xvi) that the Schur multiplier of \(Sz(2^p)\) is trivial when \(q > 8\) and the Schur multiplier of \(Sz(q)\) is of order 4 when \(q = 8\). As \(G\) is not an almost simple group, we have that \(G/H \cong Sz(q)\).

If \(q = 8\), then we obtain from ([15], p. 28) that

\[
2.2^{3+3} : 7 \in \sum 2.Sz(8)
2.2^{3+3} : 7 \in \sum 2.Sz(8).
\]

By [16], \(\text{cd}_{rv}(2.2^{3+3} : 7) = \{1, 7, 8\} = \text{cd}_{rv}(2.2^{3+3} : 7)\). It follows that if \(G\) has a subgroup \(2Sz(8)\) or \(2^2Sz(8)\), then \(2Sz(8)\) has a non-TR-subgroup \(2.2^{3+3} : 7\) and \(2^2Sz(8)\) has a non-TR-subgroup \(2.2^{3+3} : 7\), respectively. Thus \(G\) is not a semisimple group. We see that \(G\) is also a non-almost simple group, so \(G\) is isomorphic to \(Sz(8) \times H\). If \(H \neq 1\), then by ([15], p. 28), \(\text{cd}_{rv}(Sz(8)) = \{1, 35, 64, 65, 91\}\), so \(Sz(8)\) is a non-TR-group, a contradiction to Lemma 2.1. So \(H = 1\) and \(G\) is isomorphic to \(Sz(8)\) as needed.

If \(q > 8\), then \(G/H \cong Sz(q)\) as \(G\) is not an almost simple group. We see that the Schur multiplier of \(Sz(q)\) is trivial, so \([G', H] = 1\) and \(G\) is isomorphic to \(Sz(q) \times H\). If \(H \neq 1\), then \(Sz(q) \in \sum G\), so \(Sz(q)\) is a TR-group. We know from [14] and Lemma 2.5 that \(cd_{rv}(Sz(q)) \supseteq \{1, q^2, q^2+1\}\), so \(Sz(q)\) is a non-TR-group. Now \(H = 1\) gives that \(G\) is isomorphic to \(Sz(q)\) as desired. \(\square\)

REFERENCES

Liu S., R. Zhang (2023) Finite groups all of whose proper subgroups have few character values, AIMS Math., 8(4), 9074–9081.

Liu S. Finite groups whose real-valued characters of all proper subgroups are of prime degrees, submitted.

Xu H., G. Chen, Y. Yan (2014) A new characterization of simple K_3-groups by their orders and large degrees of their irreducible characters, Comm. Algebra, 42(12), 5374–5380.

White D. L. (2013) Character degrees of extensions of $PSL_2(q)$ and $SL_2(q)$, J. Group Theory, 16(1), 1–33.

School of Mathematics
Sichuan University of Arts and Science
Dazhou Sichuan, 635000, P. R. China

e-mail: s.t.liu@yandex.com