APPLICATION OF CORSIMA (COSMIC RAY SPECTRUM AND INTENSITY IN MIDDLE ATMOSPHERE) MODEL FOR SOLAR COSMIC RAYS. CASE STUDY OF THE EXTREMES GLE 05 AND GLE 69

Simeon Asenovski, Peter I. Y. Velinov, Lachezar Mateev

This work is dedicated to the 80th anniversary of the discovery of solar cosmic rays on February 28, 1942, and their confirmation a week later on March 7, 1942

Received on September 19, 2022
Accepted on November 29, 2022

Abstract

The new model CORSIMA (COsmic Ray Spectrum and Intensity in Middle Atmosphere) is presented. The spectra and intensities of solar cosmic rays (SCR) from GLE (Ground Level Enhancement) 05 on 23 February 1956 and GLE 69 on 20 January 2005 at different altitudes are calculated. For this purpose, the operational CORSIMA model is applied. In the final version of the CORSIMA program, an approximation in 6 characteristic energy intervals of the Bohr–Bethe–Bloch function is used, including the charge decrease interval. Analytical expressions for the contributions of the energy intervals are provided.

For the first time we present a quantitative and qualitative appreciation of the impact of Solar Cosmic Rays (SCRs) from the Solar Particle Events (SPEs) on the ionosphere and middle atmosphere (30–80 km). These altitudes are above the Regener–Pfotzer maximum.

Unlike Galactic Cosmic Rays (GCR), the differential spectra of SCR essentially vary in time. The SCR fluxes also differ from each other during the different events. The spectrum and intensity behaviour is explained considering the structure of the CORSIMA program. The calculation results are in agreement with the experimental data and show characteristic features of the propagation process for different altitudes and geomagnetic latitudes. The

DOI:10.7546/CRABS.2023.01.07
Calculations are performed for geomagnetic latitudes 90° (cusp region). The
development of this research is important for the processes and mechanisms of
space weather.

Key words: solar cosmic rays spectra and intensities, middle atmosphere,
lower ionosphere

PACS Numbers: 94.10.-s, 94.20.-y, 96.40.-z

Introduction. The relativistic particles of cosmic rays (protons and heavier
nuclei of galactic and/or solar origin) \(^{[1,2]}\) induce complicated nuclear-electro-
magnetic-lepton cascades in the atmospheres of Earth, planets and their moons
\(^{[3–11]}\), eventually leading to an ionization and excitation of the planetary environ-
ment. The induced by cosmic rays atmospheric ionization determines the effect
of precipitating particles on atmospheric physics and chemistry \(^{[12–14]}\).

The solar cosmic rays are important factor for the ionization and energetic
state of the ionosphere and atmosphere \(^{[1–4,6,14]}\). The new model CORSIMA
(COsmic Ray Spectrum and Intensity in Middle Atmosphere) is presented in this
paper. CORSIMA is a submodel of CORIMIA (COsmic Ray Ionization Model
for Ionosphere and Atmosphere) \(^{[15–19]}\).

The present paper presents the results of the CORSIMA program with ap-
plication to the GLE (Ground Level Enhancement) 05 on 23 February 1956 and
GLE69 on 20 January 2005. Similar analyses for GLEs 59, 69 and 70 are provided
in \(^{[20]}\).

Spectra and electromagnetic interactions of SCRs. The corresponding
differential spectra for GLE 69 were taken from the available GOES satellite data.
We investigate the SCR effects in the polar cusp region at geomagnetic latitudes
of 90° during two of the strongest Solar Proton Events (SPEs) observed since
the beginning of neutron monitor measurements of cosmic rays. In this way the
extreme influence of solar activity on the ionization state of the ionosphere and
middle atmosphere is calculated.

In contrast to the GCR cases, the SCR differential spectra essentially vary
in time during the course of the investigated event. It is difficult to make a
generalization of the global impact of SCR on atmospheric chemistry and electrical
conductivities for the entire period. Therefore, it is appropriate to consider more
than one time point of the SCR impact. In the case of GLE 69, we consider two
characteristic time points – at 8:00UT and 23:00UT during SCR penetration.
The corresponding differential spectrum in cm\(^{-2}\).s\(^{-1}\).MeV\(^{-1}\) outside the atmosphere
(according to GOES data) for the time point at 8:00UT is:

\[
D(E) = 1.55 \times 10^6 E^{-2.32},
\]

and for the time point at 23:00UT it is:

\[
D(E) = 10^7 E^{-3.43}.
\]
The differential spectrum for GLE 05 $^{[3]}$ is:

(3) \[D(E) = 2.4 \times 10^{10} E^{-5}. \]

These spectra are determined in the following way. For each spectrum (1) and (2), two data points are taken from the GOES data. They belong to different energy intervals of the measurement as given in these data lists. Then a system of equations is solved for the two unknown parameters of the spectrum: the magnitude K and the exponent $\gamma^{[5]}$.

The CORSIMA program is applied for the first time to the SEP and the results show that it is suitable for calculating the propagation of solar particles. The model embedded in this program includes the full approximation of the Bohr–Bethe–Bloch ionization losses function $^{[15–19]}$ using 6 characteristic energy intervals for cosmic ray (CR) nuclei groups:

(4) \[
\frac{1}{\rho} \frac{dE}{dh} = \begin{cases}
2.57 \times 10^3 E^{0.5} & \text{if } kT \leq E \leq 0.15 \text{ MeV/n}, \text{ interval 1} \\
1540 E^{0.23} & \text{if } 0.15 \leq E \leq E_a = 0.15Z^2 \text{ MeV/n}, \text{ interval 2} \\
231 \times Z^2 E^{-0.77} & \text{if } E_a \leq E \leq 200 \text{ MeV/n}, \text{ interval 3} \\
68 \times Z^2 E^{-0.53} & \text{if } 200 \leq E \leq 850 \text{ MeV/n}, \text{ interval 4} \\
1.91 \times Z^2 & \text{if } 850 \leq E \leq 5 \times 10^3 \text{ MeV/n}, \text{ interval 5} \\
0.66 \times Z^2 E^{0.123} & \text{if } 5 \times 10^3 \leq E \leq 5 \times 10^6 \text{ MeV/n}, \text{ interval 6}
\end{cases}
\]

We investigate the case of solar protons penetration (charge $Z = 1$) in the Earth’s atmosphere. That is, the interval 2 is not considered. On the other hand, we show that the last three high energy intervals (above 200 MeV) do not contribute to the ionization rate (GLE 69 at 23:00UT and GLE 05). The last two intervals (the energies above 2 GeV) for GLE 69 at 8:00UT are also without contribution (Fig. 1). Consequently, the dependence of the particle number on the characteristic energy intervals can be seen in Fig. 1 (4). For comparison, we also show GCR spectra at solar minimum and maximum and anomalous CR (ACR) spectra for O^+ and He^+ with charge $Z = 1$, i.e. singly ionized. The ACR spectra are effective below 100 MeV and the GCR spectra – above 1 GeV (relativistic energies).

Model description. The operational model embedded in CORIMIA program is developed in $^{[15–19]}$. The main mathematical expression for calculating the ionization rate in the atmosphere, including the full composition of CR, is as follows:

(5) \[
q(h) = \sum_i q_i(h) = \frac{1}{Q} \sum_i \int_{E_i}^{\infty} \int_{\theta=0}^{2\pi} \int_{A=0}^{\frac{\pi}{2}+\Delta\theta} D_i(E) \left(\frac{dE}{dh} \right)_i \sin \theta d\theta dAdE,
\]

where A is the azimuth angle, θ is the angle towards the vertical, $\Delta\theta$ takes into account that at a given height the particles can penetrate from the space angle $(0^\circ, \theta_{\text{max}} = 90^\circ + \Delta\theta)$, which is greater than the upper hemisphere angle $(0^\circ, 90^\circ)$.
for flat model. E_i are the energy cut-offs. The summation in the ionization integral (1) is made on the groups of nuclei: protons p, Helium (alpha particles), Light L ($3 \leq Z \leq 5$), Medium M ($6 \leq Z \leq 9$), Heavy H ($Z \geq 10$) and Very Heavy VH ($Z \geq 20$) nuclei in the composition of cosmic rays $^{[1-4]}$. Z is the charge of the nuclei, $Q = 35$ eV is the energy which is necessary for formation of one electron-ion pair $^{[6]}$.

$D_i(E)$ is corresponding SCR differential spectrum for protons which is given in (1)–(3).

Energy cut-offs E_i, which are lower boundary of integration in (5), are calculated on the base of geomagnetic E_R and atmospheric cut-offs E_A for given geomagnetic latitude λ_m and atmospheric altitude (travelling substance path \tilde{h}) with the following expression:

$$E_{\text{min}} = \max\{E_R(\lambda_m), E_A(\tilde{h})\}. \quad (6)$$

The geomagnetic cut-off $^{[4]}$ is evaluated in equation (7):

$$E_R(\lambda_m) = \left(14.9 \left(\cos\left[\frac{\pi \lambda_m}{180}\right]\right)^2 + 0.88\right)^{1/2} - 0.938. \quad (7)$$

The atmospheric cut-offs take into account the travelling substance path and for the case of SCR protons (because of the characteristic energy interval ranges $^{[18]}$) take the forms E_{A1} and E_{A2}:

$$E_{A1}(h) = \left((kT)^{0.5} + 1285\tilde{h}\right)^2, \quad (8)$$

$$E_{A2}(h) = \left[0.15^{1.77} - \frac{231 \times 1.77}{1285} \left(0.15^{0.5} - (kT)^{0.5}\right) + 231 \times 1.77\tilde{h}\right]^{1/1.77}. \quad (9)$$

From (5) we obtain the concrete expressions for the electron production rate caused by SCR protons penetration in the atmosphere. It can be seen in Fig. 1 that the first three intervals are effective for the contributions to the ionization rate values. They are intervals 1, 3 and 4 in (4) for $Z = 1$. The energy decrease laws $^{[9]}$ without boundary crossing for these intervals are:

$$E_1(h) = \left[E_k^{0.5} - 1285\tilde{h}\right]^2, \quad (10)$$

$$E_2(h) = \left[E_k^{1.77} - 231 \times 1.77\tilde{h}\right]^{1/1.77}, \quad (11)$$

$$E_3(h) = \left[E_k^{1.53} - 68 \times 1.53\tilde{h}\right]^{1/1.53}. \quad (12)$$

S. Asenovski, P. I. Y. Velinov, L. Mateev
The energy decrease laws with boundary crossing have the form:

\[E_{21}(h) = \left[0.15^{0.5} - 1285h + \frac{1285}{231 \times 1.77} \times (E_{k}^{1.77} - 0.15^{1.77}) \right]^2. \]

Expression (13) is valid if particles with initial energy in interval 2 cross the boundary due to ionization losses and cause ionization with energy in interval 1 at altitude \(h \). A similar expression is derived when particles transfer the boundary between interval 3 and 2:

\[E_{32}(h) = \left[200^{1.77} + \frac{231 \times 1.77}{68 \times 1.53} (E_{k}^{1.53} - 200^{1.53}) - 231 \times 1.77h \right]^{1/1.77}. \]

We include also two coupling intervals for upper boundaries of interval 1 and 3 (\(E_{0.15}(h), E_{200}(h) \)) which have the form:

\[E_{0.15}(h) = \left[0.15^{1.77} + 231 \times 1.77h \right]^{1/1.77}, \]
\[E_{200}(h) = \left[200^{1.53} + 1.53 \times 68h \right]^{1/1.53}. \]

The sub model for SCR protons penetration in the atmosphere is derived in equation (17):

\[q(h) = \frac{\rho(h)}{Q} \begin{cases}
2.57 \times 10^3 \int_{E_{\text{min}}}^{0.15} D(E) [E_{1}(h)]^{0.5} dE + \\
+2.57 \times 10^3 \int_{0.15}^{E_{0.15}(h)} D(E) [E_{21}(h)]^{1/2} dE + 231 \int_{E_{0.15}(h)}^{200} D(E) [E_{2}(h)]^{-0.77} dE + \\
+231 \int_{200}^{E_{200}(h)} D(E) [E_{32}(h)]^{-0.77} dE + 68 \int_{E_{200}(h)}^{850} D(E) [E_{3}(h)]^{-0.53} dE \end{cases}. \]

This expression is characteristic for SCR differential spectra, because it is restricted to the lower energy intervals of the ionization losses function.

Results and conclusions. The CORSIMA submodel for calculating SCR penetration in the atmosphere considering the first three characteristic energy intervals (17) is applied to the GLE05 and GLE 69 events. These are the strongest and the well-known events in the history of the space exploration. Figures 2, 3 and 4 show the main results of the spectra calculated with the CORSIMA program.
Fig. 1. Differential spectra of solar cosmic rays (SCRs) during GLE 05 and GLE 69 (8:00UT and 23:00UT). Here for comparison are presented also galactic cosmic ray (GCR) spectra during solar maximum (light blue) and solar minimum (light blue) and anomalous cosmic ray (ACR) spectra for O\(^+\), He\(^+\) and H\(^+\).

Fig. 2. Solar energetic particles (SCRs) spectrum from SPE event on 23 February 1956 at altitudes 30, 35, 40, 45, 50 km with initial spectrum outside of the atmosphere (dotted curve), this is the most powerful solar proton event in the history of space era.
Fig. 3. Solar energetic particles (SCRs) spectrum from SPE event on 20 January 2005 at 8:00 UT for altitudes 30, 35, 40, 45, 50 km with initial spectrum outside of the atmosphere (dotted curve). This is the second powerful solar proton event in the space era.

Fig. 4. Solar energetic particles (SCRs) spectrum from SPE event on 20 January 2005 at 23:00 UT for altitudes 30, 35, 40, 45, 50 km with initial spectrum outside of the atmosphere (dotted curve). This is the second powerful solar proton event in the space era.
The spectra intensity of SCR depends on the travelling substance path (dependence on altitude, atmospheric cut-offs and ionization losses dependence), geomagnetic cut-offs, neutral density (altitude dependence), spectra magnitude and the exponent (number of charged particles).

Figure 1 shows the GCR spectra for solar minimum and solar maximum with their characteristic maxima at 600 MeV. The SCR spectra for GLE05 and GLE69 at 8:00UT and 23:00UT are also presented. The ACR (Anomalous Cosmic Ray) spectra for O\(^+\) and He\(^+\) have lower energy values as shown in Fig. 1. The main ionization sources in the upper atmosphere are presented in Fig 1.

Figure 2 presents the results of the spectra calculation of the GLE 05, which is the strongest event observed in the history of solar cosmic ray investigations. This is the most powerful solar proton event which is observed in the history of solar cosmic ray investigations. The characteristic behaviour of the spectra for all altitudes is due to the travelling substance path and the corresponding atmospheric cut-offs for the given altitude value. This is correct because we calculate the intensities for the polar cusp where the geomagnetic cut-off rigidity is almost zero.

Figures 3 and 4 present the spectra of SCR during GLE 69 with spectra measured on 20.01.2005 at 8:00UT and 23:00UT. These curves reflect spectra in the polar cusp region for \(\lambda_m \approx 90^\circ\) where the corresponding geomagnetic cut-offs are \(\approx 0\) GV. The altitude region covers the heights interval 30–80 km. As can be seen in Fig. 2 and 3 the spectra increase with altitude.

The SCR spectra at latitude 90\(^\circ\) cross due to the different energy power and magnitudes of the differential spectra for 8:00 and 23:00 UT (see Fig. 1). For lower altitudes (larger cut-off values) the spectrum with lower power dominates. For higher altitudes, the decreasing neutral density already dominates.

The differential spectrum with the smaller exponent (8:00 UT) causes larger values for lower altitudes. The reason is the strong atmospheric cut-off at these altitudes. At higher altitudes the influence of the larger spectrum magnitude (23:00UT) dominates.

The CORSIMA and CORIMIA programs (which are based on the Mathematica program system) are able to calculate the SCR spectra and intensity stably and accurately for the effects of any solar CR impact on the lower ionosphere and middle atmosphere. The structure of the program is user-friendly, with detailed descriptions of input and output data in corresponding windows. In the future, we will continue to develop and improve the CORSIMA program as a directly applicable routine for space weather and space climate investigation objectives.
REFERENCES

Institute for Space Research and Technology
Bulgarian Academy of Sciences
Akad. G. Bonchev St, Bl. 1
1113 Sofia, Bulgaria
e-mail: asenovski@gmail.com
peteriyvelinov@gmail.com
lnmateev@bas.bg